
On behavioral detection

Philippe Beaucamps and Jean-Yves Marion

{Philippe.Beaucamps,Jean-Yves.Marion}@loria.fr
Nancy-Université - INPL

LORIA
B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex, France

Abstract. This study is about behavioral detection based on automata
over infinite words. Malware are considered as concurrent systems, which
interact with an environment. So malware traces are now infinite words.
We propose a NLOGSPACE behavioral detection method based on Büchi
automata. The goal of this paper is to present in a nutshell some the-
oretical aspects behind behavioral analysis. We don’t take up questions
related to implementations, which will be studied in forthcoming papers.

1 Introduction

Today, systems are now inter-connected, and programs are mobile. Our point of
view is that we can not consider a malware as a sequential program, but rather
as a system which interacts with its environment. With ubiquitous computing
comes ubiquitous malware ! Since the early days and the seminal work [4] of Co-
hen in 1986, behavioral detection is a known tool to detect malicious programs.
Most of the approaches are function-based. That is, it consists in determining
whether or not system calls are legitimate. We refer to the very nice survey [8]
for a rather complete overview of all the different aspects and challenges of be-
havioral detection.

One of the main advantages of behavioral detection compared to traditional
syntactic approaches is the fact that it can handle some mutations by obfusca-
tions, which will become soon necessary [6]. However, the study [7] shows that
the current implementations are not fully operational. Nevertheless, there are
several reasons to push behavioral detection. In particular, it may help new de-
tection methods like the one described in a series of papers [3, 13] and also the
one presented in [2], combining syntactic and semantic aware detectors. In this
last paper, a new method named morphological analysis is proposed, developed
and tested. Detection is based on the recognition of an abstract malware con-
trol flow graph. We do think that behavioral analysis may help to improve the
construction of abstract malware control flow graphs.

In this paper, we propose to deal with the general notion of program traces
in order to detect malware. The main novelty is that we consider traces as
infinite words over a finite alphabet. Indeed, a worm, which is scanning some
channels, has no reason to terminate. To deal with infinite traces, we use the
classical theory of automata on infinite words [14]. We show how to use Büchi



automata to detect malicious behaviors. This gives a NLOGSPACE detection
method. From this, we try to propose a definition of how to represent a malware
behavior based on automata which has the main advantage to open the door to
automatic methods coming from model-checking.

1.1 Prerequisite

Suppose that Σ is a finite alphabet. The set Σ∗ is the set of finite words over Σ

and Σω is the set of infinite words over Σ. An infinite word u ∈ Σω is written
u=u(0)u(1). . . u(i). . . where each u(i) is in Σ. We set Σ∞ = Σ∗ ∪ Σω.

2 From semantics to finite trace detections

2.1 Syntax and Semantics of a core WHILE language

We introduce a simple programming language WHILE, which has enough expres-
sive power for our study. The objective is to relate the operational semantics to
the notion of traces, which plays a key role, as we shall see, in behavioral detec-
tion. The programming language WHILE is convenient to illustrate pour point of
view. The syntax of WHILE is given by the following grammar

Expressions: Exp → Var | Label | Exp Bop Exp | Uop Exp

Commands: Stm → Label : Var := Exp | Stm1; Stm2 | Label : while(Exp){Stm} |
Label : if(Exp){Stm1}else{Stm2} | CallExp

Here Var denotes a variable, which corresponds to some memory location. Label
is a program location, which also corresponds to a memory location. Uop and
Bop correspond to respectively unary operators and binary operators. In partic-
ular, commands CallExp allow to make a system calls. Each program statement
is identified by a unique label. A WHILE program p is just a statement Stm.
The domain of computation is Value. We assume that the evaluation of each
expression (and a fortiori of each label) is in Value. Both values and locations
belong to the same set Value and are treated as the same object. Thus, we
allow program self-reference, which is an important feature to deal with virus/-
worm auto-reproduction and mutation. A modern theoretical foundation of virus
mutations may be found in [1].

An operational semantics of the programming language WHILE is given by
a system environment Sys and a store σ. A store σ : Value 7→ Value maps a
location to a value. A system environment Sys : Value×Store 7→ Store returns
a store after the execution of a (system) call. Now, suppose one is given a WHILE

program p and a system environment Sys. The value of an expression e ∈ Exp
wrt a store σ is given by JeσK. A program configuration is a couple (lb, σ) in
which lb is a label and σ a store. A computation is a sequence of configurations,
which may be finite if the program p halts or infinite.

(lb0, σ0) → (lb1, σ1) → . . . → (lbi, σi) → . . .



This computation depends on the initial configuration. Here the initial configu-
ration is (lb0, σ0). It is convenient to define Configuration as the set of configu-
rations and Configuration∞ as the set of computations.

In this paper, we focus mostly on infinite computations because a malware is
a program, which interacts with its environment and often does not terminate.
(In [9], the authors propose a theoretical virus model based on interactions.)

2.2 Traces

A program configuration contains all information about a program state at some
time. However, in the context of malware detection, this information is too large.
We need therefore to restrict to parts of the informations contained inside a
configuration that we call a trace. For example, a sequence of system calls may
be considered as a trace, or the interactions between processes, or yet some
particular sequences of instructions.

Let us focus on system calls. Given a configuration (lb, σ), we define a map-
ping tr which returns a single trace, as follows:

tr(lb, σ) =

{

Call e if lb : Call E and e = JEσK

ǫ otherwise

Now, given a computation

(lb0, σ0) → (lb1, σ1) → . . . → (lbi, σi) → . . .

we collect the trace

tr(lb0, σ0) ⊕ tr(lb1, σ1) ⊕ . . . ⊕ tr(lbi, σi) ⊕ . . .

where ⊕ is the word concatenation. Let us illustrate this by a concrete example.
The worm IIS Worm was created in 1999 and use a buffer overflow in the Internet
Information Service (IIS) of Microsoft. IIS Worm contains the following code in
the main function:

while (1) {
in = accept(s,(sockaddr ∗)&sout,&soutsize);
CreateThread(0,0,doweb,&in,0,&threadid);
}

(Here the system call ”accept” is a shortcut for Callaccept.) It is an infinite
loop which is run as long as the process is alive. This loop listens to requests
and creates a new thread for each request by executing the function doweb. A
full analyse of IIS Worm can be found in Filiol’s book [5]. In our setting, this
loop runs two system calls on some arguments. So, we may represent a system
call trace by the infinite sequence:

accept requests CreateThread doweb accept requests CreateThread doweb . . .



where requests and doweb are the arguments of the system calls and may change
in time. Another interesting issue concerns the restriction to a given finite set of
system calls and to a given finite set of arguments. In this case, a trace is a word
of Σ∞, finite or infinite, over a finite alphabet Σ. In the IIS Worm loop example,
the argument of the system call accept is not fixed unlike the argument of the
other system call CreateThread. Indeed, the new thread always executes the
function doweb. So we can consider that some system call arguments are fixed
(or partially fixed). We use this knowledge in order to restrict traces to words
over a finite alphabet. So, a trace for this example could be then

accept CreatThread:doweb accept CreateThread:doweb . . .

In this example, the trace is an infinite word which is defined over a binary
alphabet

Σ = {accept, CreatThread:doweb}

We move now towards a formalization of traces. A trace is a finite or infinite
word over a finite alphabet Σ which is obtained by the extension of a projection
over computations. In other words, we first consider tr : Configuration 7→ Σ.
A trace is the homomorphic extension tr∞ of tr from Configuration∞ to Σ∞

defined by:

tr∞(ǫ) = ǫ

tr∞((lb0, σ0) → α)) = tr(lb0, σ0) ⊕ tr∞(α)

2.3 Behavioral detection based on finite traces

Since the seminal work of Cohen [4], behavioral detection is based on finite traces
which are words of Σ∗ for some alphabet Σ. For example in [11], they loosely use
finite automata to detect virus self-replication traces. To illustrate this point, we
consider the Xanax virus, which infected mail services, IRC channels and .exe
files in 2001. We show below a tiny fragment of the code inside the main function,
which infects .exe files (we could also present infections by IRC channels, as they
are similar wrt behavioral detection).

/∗ Copy the target to temp file host.tmp ∗/
strcpy(CopyHost,”host.tmp”);
Copyfile( hostfile ,CopyHost,FALSE);

/∗ Replace the target by the worm ∗/
strcpy(Virus,argv [0]);

Copyfile(FullPath, hostfile ,FALSE);
/∗ Add target code to code worm ∗/
AddOrig(CopyHost,hostfile);
/∗ Erase temp file ∗/

unlink(”host.tmp”);



A trace could be the word

strcpy:tmp Copyfile strcpy Copyfile AddOrig unlink

over a finite alphabet Σ of five letters. If we suppose that this trace is a valid
signature, then we can compile into a finite automaton which recognizes finite
traces of Σ∗. Next this automaton is used to detect suspect behavior.

In this approach, we actually collect traces with respect to some abstraction
(here system calls). These traces play the role of a database of malware behavior
signatures. Then we compile them into an automaton that we minimize in order
to have a representation of optimal size. Now, given a program p, we extract a
trace of it and we check whether or not it has a malicious behavior, using to the
minimal automaton.

This method is very efficient. However, we may observe that the piece of
code above is inside a loop, which searches for files to infect. This loop creates
a trace which is potentially unbounded. Moreover, a malware may be seen as
an interactive process and so its behavior may be difficult to capture with finite
words.

3 Ubiquitous malware

Nowadays, computers are communicating, codes are mobile and this all lives in
an ubiquitous world. One of our goals is to scale up malware detection in order
to take into account the fact that a malware is not a sequential process anymore,
but rather a reactive system. That is why, we try to explore malware detection
with infinite traces and we also propose a definition of malware behavior.

3.1 Infinite malware Traces

As we have seen, a trace may be seen as an infinite word. The most simple class
of automata, which deals with infinite words, are the Büchi automata. A Büchi
automaton A over the alphabet Σ is defined by a quadruplet A = (Q, q0, ∆, QF )
where Q is a finite set of states, q0 is the initial state, ∆ ⊆ Q × Σ × Q is the
transition relation, and QF ⊆ Q is the subset of final states.

The IIS Worm trace that we have discussed in the previous section is recog-
nized by the automaton which is drawn in Figure 1.

q q’

accept

doweb

Fig. 1. Trace automaton of IIS Worm



The behavior of the recent Storm worm can also be modelled by a trace
automaton. Figures 2 and 3 give an overview of the trace automaton of Storm,
based on the study by Porras, Säıdi and Yegneswaran [12]. Each node in the
main automaton, in figure 2, is associated with some sub-automaton like the
one in figure 3.

Global initialization

Initialize list of peers

Update list of peers

eDonkey handler Update Storm binaries Spam logic

Fig. 2. Overview of the trace automaton of Storm

A run over an infinite word u = u(1)u(2) . . . is an infinite state sequence
q0, q1, . . . , qi, qi+1, . . . such that for any i, (qi, u(i), qi+1) ∈ ∆. Now, a run is
accepting if there is an infinity of final states of QF which occur in a run. A
Büchi automaton A accepts (or recognizes) a word u if there is an accepting run
on u. Define L(A) = {u ∈ Σω | A accepts u}. A language L is ω-recognizable if
there is a Büchi automaton A such that L(A) = L.

Now, suppose that we have a ω-recognizable language S of traces of malware
that we consider as valid signatures. Let AS be a Büchi automaton such that
L(AS) = S. There are several ways to obtain program traces. We can use static
analysis. Or we can obtain a trace dynamically by using a virtual environment
or by code instrumentation. In the context of this paper, we suppose that we



q0

q1

q2

q3

q4

q5

search result

ip query answer

publish ack

search next

connect reply

Fig. 3. Detailed automaton of the eDonkey handler of Storm

have access to a trace u of a target program. For example u may be encoded as
a stream or we have a symbolic representation of a trace by means of a control
flow graph. To check if the trace u contains a signature of S, we may decide if u

is accepted by AS .

3.2 Behavioral detection using infinite traces

Suppose that p is a target program and we want to analyse it in order to deter-
mine whether or not its behavior is similar to the one of a known malware. For
this, we have a ω-recognizable language S of infinite malware traces. This set S

plays the role of a set of behavioral signatures, which is compiled into a Büchi
automaton AS , as said previously.

Now, a program p has several traces. Each trace of p is an execution, which
depends on inputs and on its environment. In all cases, here we suppose that
we have access to a ω-recognizable language Traces(p) of traces of p. Now, we
say that p behaves as malware wrt S, if there is a trace u ∈ Traces(p) such that
u ∈ S. In other words, Traces(p) ∩ S 6= ∅.

Theorem 1. Assume that S is a ω-recognizable language of infinite malware sig-
natures. Assume also that p is a program and that Traces(p) is a ω-recognizable
language of traces of p. There is a NLOGSPACE procedure to decide whether or
not p behaves as a malware.

The idea of the demonstration is the following. Both, Traces(p) and S are
recognized by a Büchi automaton. We have to determine whether Traces(p)∩S

is empty or not. If it is empty then there is no trace of p which corresponds
to a malware trace. Otherwise, p has a trace which is similar to a malware
trace. Vardi and Wolper [15] show that the non emptiness problem for Büchi
automata is logspace-complete for NLOGSPACE. Recall that NLOGSPACE is



the class of problem which is decidable in non-deterministic logarithmic space.
NLOGSPACE is included into PTIME.

3.3 Malware behaviors and conclusions

Automata over finite or infinite words can be used to model systems and they
are one of the key elements of model checking, see [10] for example. We suggest,
and this may be the main contribution of this paper, that the behavior of a
malware M may be specified by a automaton over finite or infinite words AM.
To illustrate this, consider again the IIS Worm example. The behavior that we
have described of IIS Worm can be represented by an automaton, see Figure 4.
So, given a set of malware, we can compile them into a single automaton AS

since each malware behavior is represented by an automaton and the union
of two automata is an automaton. The language L(AS) is the set of malware
behaviors. Now, a target program p can also be represented by an automaton
Ap. Next, p is detected if L(Ap)∩L(AS). This test can be performed efficiently
in NLOGSPACE. Lastly, we can also use temporal logic to detect if a program is
a malware. In our example, this means that p behaves as IIS Worm if p satisfies
the LTL formula �(accept → ⋄doweb). This formula means that at any time,
when a request is sent, then the system will eventually run the thread doWeb. It
an example of liveness property.

q q’

accept

accept=false doweb=false

doweb

Fig. 4. An automaton speciifcation of IIS Worm

References

1. G. Bonfante, M. Kaczmarek, and J.-Y. Marion. On abstract computer virology
from a recursion-theoretic perspective. Journal in Computer Virology, 1(3-4), 2006.

2. G. Bonfante, M. Kaczmarek, and J.-Y. Marion. Architecture of a morphological
malware detector. Journal in Computer Virology, 2008.

3. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the 2005 IEEE Symposium on Security
and Privacy (Oakland 2005), pages 32–46, Oakland, CA, USA, May 2005. ACM
Press.

4. F. Cohen. Computer Viruses. PhD thesis, University of Southern California,
January 1986.

5. E. Filiol. Computer Viruses: from Theory to Applications. Springer-Verlag, 2005.
6. E. Filiol. Metamorphism, formal grammars and undecidable code mutation. In-

ternational Journal of Computer Science, 2(1):70–75, 2007.



7. E. Filiol, G. Jacob, and M. L. Liard. Evaluation methodology and theoretical model
for antiviral behavioural detection strategies. Journal in Computer Virology, 3:23–
37, 2007.

8. G. Jacob, H. Debar, and E. Filiol. Behavioral detection of malware: from a survey
towards an established taxonomy. Journal in Computer Virology, 4:251–266, 2008.

9. G. Jacob, E. Filiol, and H. Debar. Malwares as interactive machines: A new frame-
work for behavior modelling. Journal in Computer Virology, 4(3):235–250, Septem-
ber 2007.

10. F. Kröger and S. Merz. Temporal Logic and State Systems. Springer, 2008.
11. J. Morales, P. Clarke, Y. Deng, and G. Kibria. Characterization of virus replication.

Journal in Computer Virology, 4(3):221–234, August 2007.
12. P. Porras, H. Säıdi, and V. Yegneswaran. A Multi-perspective Analysis of the

Storm (Peacomm) Worm.
13. M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based ap-

proach to malware detection. In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’07), pages
377–388, New York, NY, USA, Jan. 17–19, 2007. ACM Press.

14. W. Thomas. Automata on infinite objects. MIT Press, Cambridge, MA, USA,
1990.

15. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115:1–37, 1994.


